Constrained Steiner trees in Halin graphs

نویسندگان

  • Guangting Chen
  • Rainer E. Burkard
چکیده

In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steiner Trees with Degree Constraints: Structural Results and an Exact Solution Approach

In this paper we study the Steiner tree problem with degree constraints. Motivated by an application in computational biology we first focus on binary Steiner trees in which all node degrees are required to be at most three. We then present results for general degree-constrained Steiner trees. It is shown that finding a binary Steiner is NP-complete for arbitrary graphs. We relate the problem t...

متن کامل

Listing all spanning trees in Halin graphs - sequential and Parallel view

For a connected labelled graph G, a spanning tree T is a connected and an acyclic subgraph that spans all vertices of G. In this paper, we consider a classical combinatorial problem which is to list all spanning trees of G. A Halin graph is a graph obtained from a tree with no degree two vertices and by joining all leaves with a cycle. We present a sequential and parallel algorithm to enumerate...

متن کامل

Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees

A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT) and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation of at least 4 vertices has a HIST and if every connected graph with each edge in at least two triangles contains a HIST. These two qu...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

A 3-Approximation for the Pathwidth of Halin Graphs

We prove that the pathwidth of Halin graphs can be 3-approximated in linear time. Our approximation algorithms is based on a combinatorial result about respectful edge orderings of trees. Using this result we prove that the linear width of Halin graph is always at most three times the linear width of its skeleton. © 2005 Elsevier B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RAIRO - Operations Research

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2003